

Magnetic Field Cloaking Device eRD2 Progress Report

Abhay Deshpande, Nils Feege

EIC Advisory Committee Meeting; BNL, January 22, 2015

Charged Particle Tracking in 'Forward' Direction: Simplified Magnetic Fields

Solenoid

Solenoid + Dipole

Example: Bending 50 GeV Particles

Track Bending for 50 GeV Particles

Momentum Resolution Improvement
From Dipole Magnet

Project Timeline: Past

2013 2014

Project Timeline: Future

2015

Test superconductor

Test ferromagnet

Measure cloaking

Shielding in accelerator

Thanks to all our collaborators!

BNL Advisors

R. Gupta, B. Parker, V. Ptitsyn

RIKEN

Y. Goto, I. Nakagawa

RIKEN BNL Research Center

K. Boyle, J. Seele

Seoul National University

I. Yoon

Stony Brook University (SUNY)

K. Capobianco-Hogan, R. Cervantes,

J. Chang, B. Coe, K. Dehmelt,

A. Deshpande, N. Feege, T. K. Hemmick,

P. Karpov, Y. Ko, T. LaByer, R. Lefferts, A. Lipski,

E. Michael, J. Nam, A. Quadri, K. Sharma

Multiple Superconductor Layers Improve Shielding

Comparing SC tape wrapping options: Vertical vs helix

Varying the distance between subsequent superconductor layers

Further reducing the gap: SC tape without copper stabilizer

New cryostat for long magnetic field shield (Van de Graaff test)

Long prototype fully commissioned

New Cryostat works: Outer SC layer at 78.5 K

Long prototype fully commissioned

We're ready for test with beam!

Alternate Superconductor Option: Magnesium boride (MgB₂)

Ferromagnetic Layer: Epoxy and Stainless Steel Mixture

430 Stainless Steel Powder

Ferromagnetic Layer: Epoxy and Stainless Steel Mixture

Open Questions

What is the physics benefit (quantitative) for a conceptual forward dipole spectrometer?

What is the effect of the end-field on the accelerator performance?

What is the radiation hardness of the ferromagnetic and superconducting material?

What is the effect of a possible cryostat and its flanges on the detector acceptance and performance at small angles?

Could thermal effects due to accidental beam dumps damage the structure?

Preliminary Budget Estimate FY16

ltem	Cost Estimate [\$]
Post-doc salary (3 months) + fringe benefits	12,500 + 5,500
Graduate student salary (1 year) + fringe benefits	25,000 + 8,000
Travel expenses	2,500
Superconductor (NbTi/Nb/Cu, 2 sheets)	10,000
Superconductor (MgB ₂ , powder, processing)	(soon)
Liquid Helium supplies	5,000
BNL Superconducting Magnet Division Services	(next week)
Total	68,500
Overhead (indirect)	34,000
Preliminary Estimate FY16	\$102,500 + X

Summary

Continuous progress in quantifying SC tape properties and features of cylinders made from it.

1.3 m long magnetic field shield commissioned and ready for tests in Van de Graaff accelerator.

Epoxy-steel mixture is a viable option for our ferromagnetic material.

Excellent opportunity for students to collect laboratory experience.

To be continued...

ADDITIONAL SLIDES

A simple cylindrical magnetic cloak

superconducting

ferromagnetic

combined

Perfect cloak: magnetic permeability (ferromagnetic) $\mu_2 = \frac{R_2^2 + R_1^2}{R_2^2 - R_2^2}$

Fedor Gömöry et al.

DOI: 10.1126/science.1218316

COMSOL model of the magnetic cloak in a dipole field

Our HT Superconductor Tape

Multiple Superconductor Layers Improve Shielding

Shielding Performance of a 12 cm Cylinder (5 Layer Helix)

SC tape performance at high fields

Superconductor wrapping options

Heat Radiation Shielding

Six layers of Multi-Layer Insulation (alternating layers of aluminized Mylar and plastic foil)

Beam-line Bending Magnet

